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1. Signals and Linear Systems

* ILLUSTRATIVE PROBLEM 1.1
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4. Analog-to-Digital Conversion

« Huffman Coding:

Illustrative Problem 4.1 [Huffman Coding] Design a Huffman code for a source
with alphabet & = {x1,Xx>,...,X9} and corresponding probability vector

p = (0.2,0.15,0.13,0.12,0.1, 0.09,0.08,0.07,0.06)

Find the average codeword length of the resulting code and compare it with the entropy
of the source.

H(X)=- > p(x)logp(x)

Xek



4. Analog-to-Digital Conversion

ILLUSTRATIVE PROBLEM

Illustrative Problem 4.2 [Huffman Coding] A discrete-memoryless information
source with alphabet
X =1{x1,x2,...,X6}

and the corresponding probabilities
p = {0.1,0.3,0.05,0.09,0.21,0.25}
is to be encoded using Huffman coding.

1. Determine the entropy of the source.

2. Find a Huffman code for the source and determine the efficiency of the Huffman
code.

3. Now design a Huffman code for source sequences of length 2 and compare the
efficiency of this code with the efficiency of the code derived in part 2.



4. Analog-to-Digital Conversion

 4.3. Quantization

 Scalar Quantization
 Uniform Quantization
« Nonuniform Quantization

 \ector Quantization



4. Analog-to-Digital Conversion

* 4.3. Quantization

 Scalar Quantization
« Uniform Quantization

« Nonuniform Quantization: Many physical signals, such as speech signals, have the
characteristic that small signal amplitudes occur more frequently than large signal
amplitudes. However, a uniform quantizer provides the same spacing between successive
levels throughout the entire dynamic range of the signal. A better approach would be to
have a nonuniform quantizer, which provides more closely spaced levels at the small
signal amplitudes and more widely spaced levels at the large signal amplitudes.

A nonuniform quantizer characteristic Is usually obtained by passing the signal through a
nonlinear device that compresses the signal amplitudes, followed by a uniform PCM

quantizer.

» Compressor + Expander = Compander



4. Analog-to-Digital

 4.3. Quantization 03

* Nonuniform Quantization:
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Figure 4.14: The u-law compander




4. Analog-to-Digital Conversion

e 4.3.3. Pulse Code Modulation

« PCM

« Sampling at a rate higher than Nyquist rate

 Quantization
e Uniform PCM
* Nonuniform PCM



4. Analog-to-Digital Conversion

 4.3.4. Differential Pulse Code Modulation (DPCM)

« Samples are usually correlated random variables
* In the simplest form of DPCM, difference between two adjacent samples is

quantized.
Yn=Xn—-Yh 1 Vu—-Yn=Yn—(Xn—Y, _ N
n n n-=1 n n Hn ( n ) n 1} Xn=Yn+Xn—l
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Figure 4.18: A simple DPCM encoder and decoder



4. Analog-to-Digital Conversion

 4.3.4. Differential Pulse Code Modulation (DPCM)

* MATLAB

» Source Coding
- DPCM

 Predictor
* dpcmenco
« dpcmdeco
* dpcmopt



5. Baseband Digital Transmission

* Binary Signal Transmission:

0 — splt), D=<t=Tp
1 — 51(t), O<t=<Ty

 Additive White Gaussian Noise (AWGN):
¥(t) = si(t) + n(t), i=0,1, 0<t<Ty



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:
« Signal Correlator
« Matched Filter

e Detector



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

« Signal Correlator
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5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

. A5o(t) A5(1)
« Signal Correlator . Y i
« Example 1: 7T
o ] = I
0 T, 0
A -

Figure 5.2: Signal waveforms sqo(t) and s, (t) for a binary communication system
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Figure 5.3: Noise-free correlator outputs. (a) sp(t) was transmitted. (b) s5;(t) was
transmitted



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:
« Signal Correlator

« Example 1:
Th Ty
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5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:
« Signal Correlator
« Example 1:

0 1
Figure 5.4: Probability density functions p(#p | 0) and p (7, | 0) when so(t) is trans-
mitted



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:
« Signal Correlator

« Example 2:

Illustrative Problem 5.2 [Correlation of Signal Waveforms] Sample the signal wave-
forms in Illustrative Problem 5.1 at a rate Fs = 20/Tp (sampling interval Ts = T /20)
and perform the correlation of ¥ (t) with so(t) and 5; () numerically; that is, compute

and plot
k

ro(kTy) = > r(nTy)so(nTy), k=1,2,...,20

n=1

and
k

n(kTs) = > r(nTy)si(nTy), k=1,2,...,20
n=1
when (a) so(t) is transmitted signal and (b) s, (t) is the transmitted signal.
Repeat the above computations and plots when the signal samples ¥ (kT;) are cor-
rupted by additive white Gaussian noise samples n(kT;), 1 < k < 20, which have
zero mean and variance 0 = 0.1 and 07 = 1.



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

« Signal Correlator
« Example 2:
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5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

 Matched Filter
hit) =s(Tp — ), D<t<Tp

t

y(t) = L s(t)h(t — T)dT

t
y(t) = J s(t)s(Tp —t+T1)dT
0

T

y(Tp) = L se(t)dt = E



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

» Matched Filter
« Example 1:

ho(t) = so(Tp — )
hi(t) = 51(Tp — t)
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5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

» Matched Filter
« Example 2:

Ilustrative Problem 5.4 [Match Filtering of Signal Waveforms] Sample the signal
waveform in Illustrative Problem 5.3 at a rate of F; = 20/ Ty and perform the matched
filtering of the received signal »(t) with so(t) and s (f) numerically; that is, compute
and plot
k
Yo(kTs) = > v(nTg)so(kTs — nTs), k=1,2,...,20

n=1

and .
Yi(kTs) = > r(nTs)s (kTs - nTs), k=1,2,...,20
n=1
when (a) so(t) is the transmitted signal and (b) s (t) is the transmitted signal.
Repeat the above computations when the signal samples » (kTs) are corrupted by
additive white Gaussian noise samples n(kTs), 1 < k < 20, which have zero mean
and variance 0% = 0.1 and 02 = 1.



5. Baseband Digital Transmission

* Optimum Receiver for AWGN Channel:

* Matched Filter m// 20 f A
» Example 2: 0o -- S— T
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5. Baseband Digital Transmission

* Probability of error vs. signal-to-noise ratio
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5. Baseband Digital Transmission

« Monte Carlo Simulation of Binary Communication System

Uniform random Gaussian random
number generator number generator
S
Y O/E A Output
daﬂiggﬁce > Detector data
O

Gaussian random
number generator

Y

A

Compare
Illustrative Problem 5.6 [Monte Carlo Simulation] Use Monte Carlo simulation to ¥
estimate and plot P, versus SNR for a binary communication system that employs Error counter
correlators or matched filters. The model of the system is illustrated in Figure 5.10.




5. Baseband Digital Transmission

« Signal Constellation Diagrams for Binary Signals

£ ¢

=8

o —
VE 0 VE
(a) (b) (c)

Figure 5.21: Signal constellations for binary signals. (a) Antipodal signals. (b) On—off
signals. (c) Orthogonal signals



5. Baseband Digital Transmission

« Signal Constellation Diagrams for Binary Signals

Illustrative Problem 5.11 [Noise Effect on the Constellation] The effect of noise on
the performance of a binary communication system can be observed from the received
signal plus noise at the input to the detector. For example, let us consider binary orthog-
onal signals, for which the input to the detector consists of the pair of random variables
(7o, 71), where either

(r0,71) = (VE + ng,n1)

or
(r0,71) = (no, VE + ny)

The noise random variables 1y and n; are zero-mean, independent Gaussian random
variables with variance 0. As in Illustrative Problem 5.6, use Monte Carlo simulation
to generate 100 samples of (7p, 7)) for each value of o = 0.1, 0 = 0.3,and o = 0.5,
and plot these 100 samples for each o on different two-dimensional plots. The energy
E of the signal may be normalized to unity.



5. Baseband Digital Transmission

« Signal Constellation Diagrams for Binary Signals




5. Baseband Digital Transmission

* Multiamplitude Signal Simulation

Illustrative Problem 5.12 [Multiamplitude Signal Simulation] Perform a Monte
Carlo simulation of the four-level (quaternary) PAM communication system that
employs a signal correlator, as described earlier, followed by an amplitude detector.

The model for the system to be simulated is shown in Figure 5.26.
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5. Baseband Digital Transmission

* Multiamplitude Signal Simulation
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5. Baseband Digital Transmission

« MATLAB Tool 10'1:
* bertool 3
 doc_bpsk E



